R-Squared Energy Blog

Pure Energy

Biofuel Niches

This is the final installment of a three-part series that examines some of the renewable energy options that are presenting themselves as possible contenders to step up as petroleum steps down the depletion curve. The previous installments were:

Biofuel Pretenders

Biofuel Contenders

Today I want to talk about Biofuel Niches. Here is how I would define a Biofuel Niche: A technology that is capable of supplying, long-term, up to 10% of our present liquid fossil fuel consumption, often by utilizing specific, localized synergies.

This definition covers a great number of possibilities, and I don’t pretend that I will even cover a large fraction of them. But I want to cover some specific fuels – like cellulosic ethanol – that I believe can work in a niche. If readers can think of others, let’s discuss them. I want to lead off with some of the options I categorized as “Pretenders”, and then discuss corn ethanol which I did not discuss in the previous installments.

To reiterate, my views are based on the following expectations: 1). That the average oil price over the next 10 years will exceed $100/bbl; 2). That biomass prices will rise in response to demand, putting a premium on efficient conversion technologies; 3). That these biofuel technologies will eventually have to compete on the basis of oil price and not government handouts. This latter point is key, because it favors those technologies that can decouple from fossil fuel inputs.

Algal Biofuel

I classified this as a pretender based on the fact that technological improvements are needed in order to make algal biofuel economical – yet the hype over algae is mind-boggling. We don’t even know if it will work at scale, and yet it is going to be the solution to all our problems? Following my previous essay, I had a discussion with someone involved in testing fuels for the U.S. military. They are optimistic about the future of fuel from algae, but admitted that they were only able to secure algal fuel for testing at the cost of $100/gal! How likely is it that there will be a more than 20-fold decrease in production costs?

Having said that, there are three situations in which I think algae can work. Two of these are niches. The first is a situation in which the oil is produced as a by-product. Algae has a great number of uses in consumer products, and oil can be produced as a by-product of those consumer products. As a hypothetical, assume that algae can be engineered to produce a valuable pharmaceutical. This is certainly not science fiction; the first commercial usage of genetic engineering was to design bacteria to produce human insulin. Imagine instead algae, and oil that is removed during processing. The costs are largely born by the more valuable primary product. The problem of course is that this approach isn’t scalable. Imagine again that something like insulin production is the primary role of the algae. If you tried to scale that up to a significant fraction of our fuel usage, you will have thoroughly saturated the market for the insulin. But perhaps if we can pair up a number of primary products with algal oil production, algae can make a contribution to our fuel supply.

The second situation is similar. If algae production is one step in an integrated energy complex, it could work. For instance, I was recently asked to comment on just such an approach by Desert Biofuels, a company in Arizona. Without endorsing their specific approach, this sort of approach may work. (Actually their approach is quite complex and has unique technical risks). But algae can be effective at cleaning up waste water. Imagine algal-cleanup as one step of an integrated complex, and the costs go down substantially.

The only scalable approach I can see is for algae to be engineered to excrete their oil in situ. What drives the cost of algae up so much are the difficulties of collecting the algae, separating from water, and then separating the oil from the algae. (Often overlooked is that the oil must be further processed to biodiesel or green diesel). Now imagine a pond of algae in which the oil “leaks” out while the algae grow. The process of collecting the oil would be dramatically simplified. A caveat of course is that engineered algae tend to get out-competed by native strains. The bigger caveat is that this technology doesn’t exist, but companies are working on it.

The wild card out there is the Solazyme approach. Think sugarcane ethanol, except instead of yeast producing ethanol you have algae producing oil. The approach is interesting – which is why I mention it – and gets away from many of the problems inherent in trying to produce fuel from algae. Is it more efficient than sugarcane ethanol? I think it’s too early to tell. But one poster at The Oil Drum indicated that during a Q&A with a Solazyme representative, he couldn’t come close to a believable answer regarding scale-up costs. So while I think this one bears watching, it is far too early to suggest that this will pan out.

For a balanced overview of fuel from algae, see Biotech’s green gold?

Cellulosic Ethanol

I see two major problems with the scalability of cellulosic ethanol. First, the logistical challenges of getting a lot of biomass into the plant is going to limit the size of the plant. As I pointed out in an essay on Coskata, to run their proposed plants would take the equivalent of over a million trees per year. In terms of rail cars, this is over 1 per hour, 24 hours a day, 365 days a year in and out of the plant to dump the biomass. And bear in mind that this is really a gasification to ethanol plant, with higher forecast yields than a conventional cellullosic process (i.e., a real cellulosic plant of this size would require even more biomass).

But beyond that, the ethanol that is produced from the cellulosic process is at a far lower concentration than that of corn ethanol. That means big energy inputs in order to make pure ethanol.

A good niche application for cellulosic ethanol could be a situation in which there is a lot of waste heat available near a point source of biomass. Generally, there isn’t a lot of high quality waste heat that would contribute a lot to the steam needs of a cellulosic ethanol plant. But picture something like a cogeneration unit near a collection point for woody waste. The waste is being collected and is coming in anyway for disposal, and the heat output from the cogen unit may improve the economics.

Another alternative could be if there is another very cheap source of steam around that can’t be better utilized. If you had a lot of coal in the same location as a lot of biomass, again a cellulosic process might work (but I would argue that depending on the source of biomass, gasification might be a more efficient solution here).

Hydrogen

While not generally considered a biofuel, I discussed hydrogen in my “Pretenders” piece so I will address it here as well. In my opinion, the most interesting realistic option for hydrogen is as energy storage for excess power. For instance, let’s say you have a neighborhood in which most houses have enough solar panels to produce excess electricity at mid-day. Once the batteries are charged, what else can you do with that excess electricity? If it can’t be diverted to someplace that has a need, then it may make sense to electrolyze water to produce hydrogen. This is not a very efficient process, and not something you would do under normal circumstances, but in this case it could be the best storage option.

Once the hydrogen is produced, it could either be used to fuel stationary fuel cells for the neighborhood when the solar panels aren’t producing, or it could be compressed and used to fuel hydrogen combustion engines.

Corn Ethanol

A niche, you say? Aren’t we producing 10 billion gallons of corn ethanol already? True, but I am talking about something that could actually stand on its own in the long run – unsubsidized – and still make a decent net contribution to our energy supplies. In that case, producers might still be able to sell 10-15 billion gallons of ethanol a year and make a profit, but the distribution pattern would be different. In a state with ample rainfall and rich soil, corn ethanol may be able to stand unsubsidized by making and consuming the ethanol locally. Corn ethanol may be a fine solution for Iowa (although E85 is not even cornering the market in Iowa, where it should be in its optimal market). Stretching it beyond a local solution is where the economics start to break down and the scheme only works with subsidies.

Here are some examples of what I am talking about. When corn ethanol is produced far from corn supplies – like in California – the economics became difficult due to the cost of shipping the corn to the plant. I talked about that in 2006, when I warned of the potential problems of Pacific Ethanol’s plans to do just that. They filed for bankruptcy earlier this year.

Another example is when ethanol is produced from a state in which ethanol’s energy balance is poor (e.g., parts of Nebraska, due to corn’s irrigation requirements) and then shipped to California. If you look at the USDA’s most recent paper on corn ethanol’s energy balance (the one in which they used creative accounting), you can see from Table 2 that Nebraska’s energy inputs for growing corn are about 20,000 BTU/bushel above the Midwest average. (By comparison, Iowa’s are 11,000 BTU/bushel under the Midwest average). This has the overall impact of actually causing Nebraska’s net energy from producing ethanol to be negative unless one adds a BTU credit for co-products. With such a marginal energy balance (and I haven’t even mentioned the Ogallala Aquifer) it hardly makes sense to produce ethanol in the drier regions of Nebraska. It makes even less sense to then spend more energy shipping that ethanol far from the point of origin.

Conclusion

Those are some of the major niche applications I see, but there are certainly others. What corn ethanol could be for Iowa, sugar beet ethanol may be to the EU and palm oil may be to Malaysia. The key to success for any of these is not to try to scale something that should operate in a niche. When we attempt to do this, we open up a can of perpetual subsidies in order to force something that doesn’t fit, and often get unintended consequences in the process.

September 7, 2009 Posted by | algal biodiesel, cellulosic ethanol, ethanol, hydrogen | 111 Comments

Biofuel Pretenders

Note

This article was initially titled “Pretenders, Contenders, and Niches.” However, the section on pretenders grew to the point that I have decided to split the essay up into three parts. The first part, Biofuel Pretenders, will cover many of the current media and political darlings. The second part, Biofuel Contenders, will discuss some options that have received less attention, but in the long term are more likely to have staying power. The final part, Biofuel Niches, will discuss situations in which some of the pretenders might actually work.

Reality Begins to Sink In

There was an interesting article in the Wall Street Journal this past week:

U.S. Biofuel Boom Running on Empty

A few pertinent excerpts:

The biofuels revolution that promised to reduce America’s dependence on foreign oil is fizzling out.

Two-thirds of U.S. biodiesel production capacity now sits unused, reports the National Biodiesel Board.

Producers of next-generation biofuels — those using nonfood renewable materials such as grasses, cornstalks and sugarcane stalks — are finding it tough to attract investment and ramp up production to an industrial scale.

This all boils down to something I have said on many occasions: You can’t mandate technology. Just because you mandate that 36 billion gallons of biofuel are to be produced by 2022 doesn’t mean that it has a remote chance of happening. This is not a hard concept to understand, but it seems to have eluded our government for many years. The government would probably understand that they couldn’t create colonies on the moon in 10 years via mandate. They know they can’t cure cancer via mandate. But in the area of biofuels, they seem to feel like they can just conjure up vast amounts of hydrogen, cellulosic ethanol, or algal biodiesel.

Domestically produced biofuels were supposed to be an answer to reducing America’s reliance on foreign oil. In 2007, Congress set targets for the U.S. to blend 36 billion gallons of biofuels a year into the U.S. fuel supply in 2022, from 11.1 billion gallons in 2009.

Cellulosic ethanol, derived from the inedible portions of plants, and other advanced fuels were expected to surpass corn ethanol to fill close to half of all biofuel mandates in that time.

But the industry is already falling behind the targets. The mandate to blend next-generation fuels, which kicks in next year, is unlikely to be met because of a lack of enough viable production.

Most people don’t realize that the Germans were the first to produce ethanol from cellulose. That happened in 1898. For our political leaders and many industry boosters, cellulosic ethanol is a recent discovery, and thus they expect big leaps in the technology in the next few years. These expectations completely ignore the fact that researchers have been hard at work on making cellulosic ethanol a reality for decades – with little success.

In President Bush’s 2006 State of the Union address, he broadly expanded the mandate for ethanol. He voiced his strong support for cellulosic ethanol, and included billions of gallons in the Renewable Fuel Standard – as well as billions of dollars of financial support.

How quickly our politicians seem to have forgotten the 2003 State of the Union, in which Bush set forth his vision of the hydrogen economy:

A simple chemical reaction between hydrogen and oxygen generates energy, which can be used to power a car producing only water, not exhaust fumes. With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen and pollution-free.”

We spent some two billion dollars toward that goal. Once again, this ignored many technical and economic realities, and so in May 2009 the headlines read:

Hydrogen Car Goes Down Like the Hindenburg: DoE Kills the Program

The dream of hydrogen fuel cell cars has just been put back in the garage. U.S. Energy Secretary Steven Chu announced yesterday that his department is cutting all funding for hydrogen car research, saying that it won’t be a feasible technology anytime soon. “We asked ourselves, ‘Is it likely in the next 10 or 15, 20 years that we will covert to a hydrogen car economy?’ The answer, we felt, was ‘no,’” Chu said.

My prediction is that in the not too distant future we will start to see headlines like this for cellulosic ethanol. The troublesome barriers to commercialization are quite fundamental, and aren’t likely to be resolved by government mandate. If enough money is thrown at it, cellulosic ethanol will of course be produced. But it can never be a scalable, economic reality.

Pretenders

Broadly speaking, in the world of next generation biofuels there are contenders, pretenders, and niches. Over the past decade, we have thrown a lot of money at pretenders and have little to show for it. There are many reasons for this, but fundamentally I believe it boils down to the fact that our political leaders can’t sort the wheat from the chaff. If a proponent extols the benefits of hydrogen, cellulose, or algae – the politicians just don’t know enough to ask the right critical questions. They listen – often to the very people who will benefit from more funding – and then they allocate money. Billions of dollars and little progress later, they or their successors may begin to realize that they have been misled and they start to dial the funding back.

Here is how I define a next generation Biofuel Pretender: A company or group that makes grandiose promises about the ability of a technology to displace large amounts of fossil fuel, despite facing significant (and often unrecognized) barriers to commercialization.

Here are some examples:

Hydrogen

The poster child for the pretenders. Proponents ignored practical realities in many different areas, including fuel cell vehicles that cost a million dollars, the fact that most hydrogen is produced from natural gas, the fact that the energy density of hydrogen is very low, and the fact that there are multiple issues with hydrogen storage and transport. Technical breakthroughs were being counted on to solve these challenges. After all, we put a man on the moon. Surely we could solve these challenges.

The real problem is that the potential for success falls rapidly as the number of needed breakthroughs pile up. Imagine for instance that the following – cost of production, cost effective storage, and cost effective transport – each have a 25% chance of achieving commercial viability in the next 20 years. The total chance for success of all three in that case falls to 1.5% – so this is overall probability of success. Thus, the vast majority of technologies that require multiple technical breakthroughs will fail to materialize commercially except perhaps over a much longer period of time.

Cellulosic Ethanol

As was the case with hydrogen, this one requires multiple technical breakthroughs before commercial (unsubsidized) viability can be achieved. I won’t go through them all now, as I have covered them before. The fundamental reason that cellulosic ethanol won’t scale up to displace large amounts of gasoline is that the energy efficiency of the process is so low. You have the sugars that make up cellulose locked up tightly in the biomass – which has a low energy density to start with. So you add energy to unlock the sugar and turn it into ethanol, and then you end up with ethanol in water. More energy inputs are required to get the ethanol out. Even if the energy can be supplied by the by-products of the process like lignin, the net BTUs of liquid fuel that you end up with are going to be low relative to what you started with.

For example, assume you start off with 10 BTUs of biomass. You expend energy to get it to the factory, to process it, and then to get the water out. You burn part of the biomass to fuel the process, and input some fossil fuel. You might net something like 3 BTUs of liquid fuel from the 10 BTUs of biomass you started with.

Don’t confuse this with fossil fuel energy balance, though. If the external energy inputs in this example only amounted to 1 BTU of fossil fuel, one could claim a fossil fuel energy balance of 3/1. But that doesn’t change the fact the final liquid fuel input is a small fraction of the starting BTUs in the biomass.

This is analogous to the situation with oil shale, which is why I have compared the two. There may in fact be a trillion or more barrels of oil shale locked up in Colorado, Utah, and Wyoming. But if the extraction of those barrels required a trillion barrels worth of energy inputs and lots of water – then that oil shale might as well be on the moon. That means that a trillion barrels isn’t really a trillion barrels in the case of oil shale, and a billion tons of biomass is much smaller than it seems when talking about cellulosic ethanol.

So despite the claims from the EPA that the “Renewable Fuel Standard program will increase the volume of renewable fuel required to be blended into gasoline from 9 billion gallons in 2008 to 36 billion gallons by 2022” – that is not going to happen unless the government is willing to throw massive amounts of money at an inefficient process.

Algal Biofuel

Like many, I was initially enchanted by the possibility of weaning the world away from fossil fuels by using fuel made from algae. Proponents wrote articles suggesting that we could do just that, provided the necessary investments are made.

Sadly, the story is much more complex than that. The U.S. DOE funded a study for many years into the potential of algae to produce fuel. (For an overview of where things stand from John Benemann, one of the men who co-authored the close-out report of that study, see Algal Biodiesel: Fact or Fiction?) The problem is again one of needing to surmount multiple technical hurdles, and the close-out report states that reality. Again, I won’t go into those details, as that has been covered before.

While it is a fact that you can produce fuel from algae, the challenges are such that John has written that you can’t even buy algal biofuel for $100/gallon. He said that if you want to separate the reality from the hype, just try to secure a contract with someone to supply you with algal fuel.

First Generation Biodiesel

This story is primarily about 2nd generation fuels, and as such I won’t get into corn ethanol issues. But I will say a bit about biodiesel. As indicated in the Wall Street Journal story, conventional biodiesel producers are in trouble. Briefly, a conventional biodiesel producer is someone who takes vegetable oils or animal fats and uses methanol (almost all of which is fossil-fuel derived) and converts that into an oxygenated compound (called a mono-alkyl ester). This compound has been defined as ‘biodiesel’, and can be used – subject to certain limitations – in a diesel engine.

Again, the problems are fundamental. It takes a lot of effort (energy, cost) to produce most of the oils that are used as raw materials, and then you have to react with methanol – which usually contains a lot of embodied fossil fuel energy. Up til now, the first generation biodiesel producers have benefited from a high level of protectionism (to the extent of punishing the more efficient 2nd generation producers). But even with the protectionism and the subsidies, producers are still struggling to survive.

Miscellaneous

There are a number of miscellaneous pretenders that we probably don’t need to discuss in depth, such as various free energy schemes or water as a fuel. If you think you might be dealing with a pretender, one caution flag is when their promoters are from backgrounds that have nothing to do with energy. For instance, the person who founded the dot.com that ultimately morphs into an energy company is almost certainly a pretender who is chasing investment funds.

Summary

To summarize, the biofuel pretenders fall into several broad categories. The big ones are:

• Hydrogen

• Most would-be cellulosic ethanol producers

• Most would-be algal biofuel producers

• Most first generation biodiesel producers

This isn’t to say that none of these will work in any circumstances. I will get into that when I talk about niches. But I will say that I am confident that none of these are scalable solutions to our fossil fuel dependence. The problem is that political leaders have been, or are still convinced that there is great potential for some of these and we waste billions of dollars chasing fantasies. This is a great distraction, causing a loss of precious time and public goodwill as taxpayer money is squandered chasing schemes that ultimately will not pan out.

In the next installment, I will talk about contenders – options that I think can compete with fossil fuels on a level playing field.

August 31, 2009 Posted by | algal biodiesel, biodiesel, cellulosic ethanol, hydrogen, john benemann | 145 Comments

How to Run a Car on Water

Oh, it can be done. There are no scientific laws that say you can’t run a car on water. In fact, a Japanese company is the latest to claim they have pulled it off. See the video here:

Water-fuel car unveiled in Japan

However, what you can’t do is run a car on water without energy inputs greater than you get from splitting the water. In simple terms, let’s say you split water to create 10 BTUs of hydrogen. You can then use that to burn in the car, or to operate a fuel cell. When you burn the hydrogen, it reacts with oxygen to again form water. But if you want to take the water and turn it back into hydrogen, it will always take more than the 10 BTUs that you released in the first place.

So let’s say it takes 12 BTUs of input to produce 10 BTUs of hydrogen from water. What’s wrong with that? Well, why wouldn’t you just use those 12 BTUs directly, instead of going through the step of cracking the water? This would be sort of like using gasoline in your car to produce steam to drive a steam engine that actually runs the car. But it’s a lot more efficient to cut out the middleman and use the gasoline directly. (One possible exception is if the conversion allowed you to operate a more efficient motor; say an electric motor instead of an internal combustion engine).

There is a way to mask the energy input, and that is what the Japanese company is doing. I had to do a bit of research, but I finally found this:

Genepax unveils water energy fuel cell system

Within the story is the key to what’s going on:

Though the company did not reveal any more detail the company president said that they had “succeeded in adopting a well-known process to produce hydrogen from water to the MEA”, similar to the mechanism that produces hydrogen by a reaction of metal hydride and water.

That clued me in as to how they were pulling this off. Metal hydrides will react with water to produce hydrogen. For instance, sodium hydride (NaH) reacts spontaneously with water as follows:

NaH + H2O → H2 (gas) + NaOH ΔH = −83.6 kJ/mol, ΔG = −109.0 kJ/mol

So, if you had NaH in your car, and you dripped water on it, you would produce hydrogen from the water. What’s the catch? Metal hydrides that react with water don’t occur naturally, because they would have already reacted. This is the same reason hydrogen doesn’t occur naturally on earth. So, it takes energy inputs to make the metal hydrides. And there is the hidden energy source in the water car.

Here’s what the laws of thermodynamics tell you. Back to the 10 BTUs of energy we liberated for the water car; it would have taken well more than 10 BTUs to produce the metal hydride required for that reaction. (Note that they may not be using metal hydrides; there are other compounds that react with water to liberate hydrogen. Again, none occur naturally on earth, and all require significant energy inputs to produce).

So, the moral is: Sometimes it appears that the lunch is free, but the bill eventually comes anyway – when you have to replenish the catalyst.

June 16, 2008 Posted by | hydrogen, water car | 42 Comments

How to Run a Car on Water

Oh, it can be done. There are no scientific laws that say you can’t run a car on water. In fact, I have personally made fire from water on a number of occasions. A Japanese company is the latest to claim they are running a car on water. See the video here:

Water-fuel car unveiled in Japan

However, what you can’t do is run a car on water without overall energy inputs greater than you get from splitting the water. In simple terms, let’s say you split water to create 10 BTUs of hydrogen. You can then use that to burn in the car, or to operate a fuel cell. When you burn the hydrogen, it reacts with oxygen to again form water. But if you want to take the water and turn it back into hydrogen, it will always take more than the 10 BTUs that you released in the first place.

So let’s say it takes 12 BTUs of input to produce 10 BTUs of hydrogen from water. What’s wrong with that? Well, why wouldn’t you just use those 12 BTUs directly, instead of going through the step of cracking the water? This would be sort of like using gasoline in your car to produce steam to drive a steam engine that actually runs the car. But it’s a lot more efficient to cut out the middleman and use the gasoline directly.

There are two possible scenarios in which this sort of scheme might make sense. One is if the conversion allowed you to operate a more efficient motor; say an electric motor instead of an internal combustion engine. The second is when it is more convenient to keep the fuel in a solid form, as was the case for my carbide lamp example. Since the fuel is only produced when water drips on the solid, there isn’t a large inventory of flammable gas or liquid that can catch fire or explode.

However, it is important to keep in mind that there is a catch. There is a way to mask the energy input, and that is what the Japanese company is doing. I had to do a bit of research, but I finally found this:

Genepax unveils water energy fuel cell system

Within the story is the key to what’s going on:

Though the company did not reveal any more detail the company president said that they had “succeeded in adopting a well-known process to produce hydrogen from water to the MEA”, similar to the mechanism that produces hydrogen by a reaction of metal hydride and water.

That clued me in as to how they were pulling this off. Metal hydrides will react with water to produce hydrogen. For instance, sodium hydride (NaH) reacts spontaneously with water as follows:

NaH + H2O → H2 (gas) + NaOH ΔH = −83.6 kJ/mol, ΔG = −109.0 kJ/mol

So, if you had NaH in your car, and you dripped water on it, you would produce hydrogen from the water. What’s the catch? Metal hydrides that react with water don’t occur naturally, because they would have already reacted. This is the same reason hydrogen doesn’t occur naturally on earth. So, it takes energy inputs to make the metal hydrides. And there is the hidden energy source in the water car. The car isn’t really running on water. It is running on a combination of water and a very reactive compound that must be replenished.

Here’s what the laws of thermodynamics tell you. Back to the 10 BTUs of energy we liberated for the water car; it would have taken well more than 10 BTUs to produce the metal hydride required for that reaction. (Note that they may not be using metal hydrides; there are other compounds that react with water to liberate hydrogen. Again, none occur naturally on earth in the reactive form, and all require significant energy inputs to produce).

So, the moral is: Sometimes it appears that the lunch is free, but the bill eventually comes anyway – when you have to replenish the catalyst. (Note: As others have correctly pointed out, the proper term here would be reagent instead of catalyst since it is almost certainly undergoing a transformation from one compound to another. I merely used the term Genepax used to describe the system.)

June 16, 2008 Posted by | hydrogen, water car | 3 Comments

Google Solar, Hydrogen, and Farm Bills

I wanted to briefly comment on several issues. Some of them deserve their own essays, but I am too pressed for time.

Google Solar

If you are into solar, Google’s Solar Panel Project is incredibly cool. They provide real time data on their solar energy production. One thing that I have noticed is that the assumption of peak power times 5 hours to get the overall daily solar production appears to be too conservative. For instance, according to the link above, yesterday power peaked at 877 KW at 1 p.m., but total energy production yesterday was 7021 KWh. I have to multiply by 8 hours to get that. In fact, that’s been a pretty consistent theme this month. It may be that 5 hours is the appropriate multiplier in the winter, and that may be where it comes from. I will have to make sure I track their production this winter (as well as California demand).

Hydrogen

A number of people have written to me at various times and asked why I never debunked hydrogen. The reason is that I felt like it was already thoroughly debunked. When President Bush pushed hydrogen in his 2003 State of the Union address, I was actually working with hydrogen in a GTL application. Hydrogen does some interesting things with flame speed and auto-ignition temperatures that I was exploring. But I didn’t know all that much about the issues of hydrogen as a large scale transportation fuel. So, I thought “That sounds pretty good.” Then, I went to work the next day, dug out the DOE’s hydrogen road map, saw what the problems were, and where the technology stood, and I concluded that there would be no hydrogen economy any time soon – probably not in my lifetime. I mean, the technology has to leap huge gulfs in several areas, which is much different than only have one or two technical challenges to resolve. So, I didn’t give hydrogen much more consideration after that.

But it won’t die:

Hydrogen can replace gasoline, scientist contends

FLINT – Stanford Ovshinsky, founder and chief scientist of Energy Conversion Devices Inc. in Rochester Hills, told the Flint Rotary Club on Friday that the world has to convert to alternative forms of energy.

He said current internal-combustion engines in cars and trucks can be converted to run on hydrogen.

With hydrogen, he said, there’s no pollution, no climate-change issues.
“All you need for fuel is water,” he said “You don’t need the Mideast.”

All you need is water? Is he serious? How about an energy source to electrolyze the water? Why don’t we get our hydrogen from water right now (instead of from natural gas)? You need that as well. Free hydrogen doesn’t just hang about, waiting to be mined. Anyway, I was going to write a longer rebuttal, but my friend Chris Nelder beat me to it:

Fuel Cells and Hydrogen Are No Panacea

I’m going to make a prediction today: you will never drive a hydrogen fueled car.

Although hydrogen does indeed have some benefits in certain applications, it’s my task today to separate the reality of useful fuel cells from the hydrogen hype.

That may seem like a bold statement to you now, but by the end of this article, you’ll understand why.

I think he did demonstrate the point, so I will merely refer you to his essay for a good debunking.

Those Darn Farmers

I say that with tongue in cheek, because I grew up on a farm that my family still owns and operates. But this one struck me as funny:

House Farm Bill Includes Production Fee For ’98-99 Oil Leases

WASHINGTON -(Dow Jones)- The U.S. House of Representatives included a measure that would impose a fee on production from controversial 1998-99 oil and gas leases in a farm bill it passed Friday.

Lawmakers have been trying since last the Congress to force the companies to renegotiate the leases, which omit royalty price thresholds, saying the omission could end up costing tax payers $10 billion in lost royalty payments.

The Government Accountability Office estimates that around $1 billion in royalties has already been lost as a result of the price-thresholds omissions, and that they could cost taxpayers an additional $9 billion in the future.

Although six companies – including BP PLC (BP), Royal Dutch Shell PLC (RDSA), ConocoPhillips (COP) and Marathon Oil Corp. (MRO) – have agreed to pay royalties on the leases on production from October 2006, they only represent a fraction of the total lease owners.

Around 40 companies representing 80% of the production haven’t agreed to renegotiate the leases, including Exxon Mobil Corp. (XOM), Total SA (TOT), Chevron Corp. (CVX) and Anadarko Petroleum Corp. (APC), according to Interior Department data. Democrats have been seeking royalty payments for all output from the leases.

While I do note that my own company has agreed to pay royalties, I can’t get past the irony that a farm bill would attempt to rectify the situation. Perhaps in the next energy bill, we can get rid of those darn sugar subsidies. I mean, come on. I can argue a case for corn subsidies. I don’t want our corn farmers to be put out of business by cheap imports (even though we get subsidized high-fructose corn syrup as part of the deal). But sugar? Give me a break. Aren’t we fat enough already without subsidizing the problem?

July 29, 2007 Posted by | energy policy, farm policy, hydrogen, solar efficiency, solar power | 31 Comments

Google Solar, Hydrogen, and Farm Bills

I wanted to briefly comment on several issues. Some of them deserve their own essays, but I am too pressed for time.

Google Solar

If you are into solar, Google’s Solar Panel Project is incredibly cool. They provide real time data on their solar energy production. One thing that I have noticed is that the assumption of peak power times 5 hours to get the overall daily solar production appears to be too conservative. For instance, according to the link above, yesterday power peaked at 877 KW at 1 p.m., but total energy production yesterday was 7021 KWh. I have to multiply by 8 hours to get that. In fact, that’s been a pretty consistent theme this month. It may be that 5 hours is the appropriate multiplier in the winter, and that may be where it comes from. I will have to make sure I track their production this winter (as well as California demand).

Hydrogen

A number of people have written to me at various times and asked why I never debunked hydrogen. The reason is that I felt like it was already thoroughly debunked. When President Bush pushed hydrogen in his 2003 State of the Union address, I was actually working with hydrogen in a GTL application. Hydrogen does some interesting things with flame speed and auto-ignition temperatures that I was exploring. But I didn’t know all that much about the issues of hydrogen as a large scale transportation fuel. So, I thought “That sounds pretty good.” Then, I went to work the next day, dug out the DOE’s hydrogen road map, saw what the problems were, and where the technology stood, and I concluded that there would be no hydrogen economy any time soon – probably not in my lifetime. I mean, the technology has to leap huge gulfs in several areas, which is much different than only have one or two technical challenges to resolve. So, I didn’t give hydrogen much more consideration after that.

But it won’t die:

Hydrogen can replace gasoline, scientist contends

FLINT – Stanford Ovshinsky, founder and chief scientist of Energy Conversion Devices Inc. in Rochester Hills, told the Flint Rotary Club on Friday that the world has to convert to alternative forms of energy.

He said current internal-combustion engines in cars and trucks can be converted to run on hydrogen.

With hydrogen, he said, there’s no pollution, no climate-change issues.
“All you need for fuel is water,” he said “You don’t need the Mideast.”

All you need is water? Is he serious? How about an energy source to electrolyze the water? Why don’t we get our hydrogen from water right now (instead of from natural gas)? You need that as well. Free hydrogen doesn’t just hang about, waiting to be mined. Anyway, I was going to write a longer rebuttal, but my friend Chris Nelder beat me to it:

Fuel Cells and Hydrogen Are No Panacea

I’m going to make a prediction today: you will never drive a hydrogen fueled car.

Although hydrogen does indeed have some benefits in certain applications, it’s my task today to separate the reality of useful fuel cells from the hydrogen hype.

That may seem like a bold statement to you now, but by the end of this article, you’ll understand why.

I think he did demonstrate the point, so I will merely refer you to his essay for a good debunking.

Those Darn Farmers

I say that with tongue in cheek, because I grew up on a farm that my family still owns and operates. But this one struck me as funny:

House Farm Bill Includes Production Fee For ’98-99 Oil Leases

WASHINGTON -(Dow Jones)- The U.S. House of Representatives included a measure that would impose a fee on production from controversial 1998-99 oil and gas leases in a farm bill it passed Friday.

Lawmakers have been trying since last the Congress to force the companies to renegotiate the leases, which omit royalty price thresholds, saying the omission could end up costing tax payers $10 billion in lost royalty payments.

The Government Accountability Office estimates that around $1 billion in royalties has already been lost as a result of the price-thresholds omissions, and that they could cost taxpayers an additional $9 billion in the future.

Although six companies – including BP PLC (BP), Royal Dutch Shell PLC (RDSA), ConocoPhillips (COP) and Marathon Oil Corp. (MRO) – have agreed to pay royalties on the leases on production from October 2006, they only represent a fraction of the total lease owners.

Around 40 companies representing 80% of the production haven’t agreed to renegotiate the leases, including Exxon Mobil Corp. (XOM), Total SA (TOT), Chevron Corp. (CVX) and Anadarko Petroleum Corp. (APC), according to Interior Department data. Democrats have been seeking royalty payments for all output from the leases.

While I do note that my own company has agreed to pay royalties, I can’t get past the irony that a farm bill would attempt to rectify the situation. Perhaps in the next energy bill, we can get rid of those darn sugar subsidies. I mean, come on. I can argue a case for corn subsidies. I don’t want our corn farmers to be put out of business by cheap imports (even though we get subsidized high-fructose corn syrup as part of the deal). But sugar? Give me a break. Aren’t we fat enough already without subsidizing the problem?

July 29, 2007 Posted by | energy policy, farm policy, hydrogen, solar efficiency, solar power | Comments Off on Google Solar, Hydrogen, and Farm Bills