R-Squared Energy Blog

Pure Energy

The First Commercial Cellulosic Ethanol Plant in the U.S.

I received a two-week reprieve on the book chapter deadline, as some of the other contributors aren’t finished. So I now have time to pick a few other things back up. I have ended up really reworking the structure of the chapter to discuss the size of the biomass resource base, the combustion technologies, the conversion technologies, and the enabling technologies. Thanks to all who provided feedback and sent e-mails.

As I was writing the section on ethanol from wood via hydrolysis (cellulosic ethanol), I came across some very interesting historical facts. I have known that cellulosic ethanol has been around a long time. I used to say that we have been working on this for decades, but then I found a reference back to 1922 which would put it back almost 100 years. Then I found a reference back to 1898, when the Germans first tried to commercialize it. Now I have traced it all the way back.

I don’t think I have ever had the privilege of using a literature reference from 1819, but here it is. In 1819, Henri Braconnot, a French chemist, first discovered how to unlock the sugars from cellulose by treating biomass with sulfuric acid (Braconnot 1819). The technique was later used by the Germans to first commercialize cellulosic ethanol from wood in 1898 (EERE 2009).

But believe it or not, commercialization also took place in the U.S. in 1910. The Standard Alcohol Company built a cellulosic ethanol plant in Georgetown, South Carolina to process waste wood from a lumber mill (PDA 1910). Standard Alcohol later built a second plant in Fullteron, Louisiana. Each plant produced 5,000 to 7,000 gallons of ethanol per day from wood waste, and both were in production for several years (Sherrard 1945).

To put that in perspective, Iogen claimed in 2004 that they were producing the world’s first cellulose ethanol fuel from their 1,500 gallon per day plant. (While 1,500 gal/day is their announced capacity, if you look at their production statistics they have never sustained more than 500 gallons per day over the course of a year; 2008 production averaged 150 gal/day).

Many companies are in a mad rush to be the “first” to commercialize cellulosic ethanol. The next time you hear someone say that they will be the first, ask them if they plan to invent the telephone next.


Braconnot, H. Annalen der Physik. (1819) 63, 348.

EERE, U.S. DOE Energy Efficiency and Renewable Energy. (2009). Biomass Program. Retrieved September 9, 2009 from

PDA, Pennsylvania Department of Agriculture. (1910). 16th Annual Report.

Sherrard, E.C.; Kressman, F.W. “Review of Processes in the United States Prior to World War II.” Industrial and Engineering Chemistry, Vol 37, No. 1, 1945, pp 5-8.

September 10, 2009 Posted by | cellulosic ethanol, Iogen | 78 Comments

Answering Reader Questions 2009: Part 2

In this installment, I continue to work my way through the list of questions recently submitted by readers. This post picks up where Part 1 left off, and covers coal-to-liquids, technology hype, green gasoline, refining improvements, allocation of money toward renewables, electricity consumption, the Automotive X Prize, Big Oil, cellulosic ethanol, and Exxon’s recent algae announcement.

The Questions

Benny wrote: Arlington researchers’ work could lead to $35-a-barrel oil. Any chance of making oil from lignite? At these prices? Or are they just some guys who want research money? Answer

takchess wrote (and Doug also asked about): Thought this was interesting. If cost and technically feasible this would be cool.

Rive Technology Working to Increase Oil Refining Efficiency 7-9% by 2011 Answer

DDHv wrote: The new ionic liquid technique allows easier extraction of cellulose. Do you know if we have enough information yet to do energy and/or economic balances? If so, what are the present results? Improvements are likely, given the novelty of the technique. Answer

John asked: What do you think of pyloric conversion to make “green gasoline”? What are it’s peak lite and environmental ramifications? Specifically referring to an article in the Boston Globe RE: Anellotech and UMAss on July 13th: The greening of gasoline Answer

PeteS asked: How likely is money spent today on renewables to be wasted in retrospect because of “grey swans”? Obviously nobody can predict the future, but I’m thinking more in terms of, say, a plan to completely power a country from wind turbines, versus low-to-medium-probability dramatic improvements in wind-power within a decade or two. Answer

SamG wrote: I hear many theories about electricity consumption and the utility business model (sell more make more). Do you see any mechanism that puts suppliers in the loop for the reduction of consumption (not just demand reduction via passing through higher prices)? Answer

takchess asked: Any comments on this Urea fueled entry into the XPrize auto race?

Alternative Fuel Sciences Answer

John wrote: Americans are being “taxed” at a rate of 200 billion bucks a year to fund the U.S. Military to “baby-sit” the Strait of Hormuz and other oil company interests in the mid-east, etc.

Factor that in and the bio-fuels look good, as do CNG, electric vehicles or bio-fuel-electric hybrids. Imagine that…. a bio-fuel-electric hybrid. That completely shuts out the oil companies and their little “gasoline forever” game. The fact that bio-fuels, CNG and electricity are already cheaper than gasoline must be giving the traditional oil companies nightmares already. Answer

LovesoiL wrote: 1) What is a reasonable pace towards commercialization of ‘1st generation’ alternative fuels, e.g., cellulosic. Many ethanol advocates (DoE, USDA, EPA, US Congress) assume that while only 1 commercial scale facility is currently in construction (Range), somehow 1 billon gallons of annual capacity will get built during the next 3-5 years, and then we’ll build that much (30-40 plants) every year for the next decade?

2) How long is needed to operate a 1st gen facility to optimize its processing and demonstrate profitability before investors will agree to pay another ~$300 million build the 2nd facility?

3) Both Choren and Range fuels have gasification of woody biomass as the first step for their transformation process. Choren finished construction a year ago and has been in the commissioning process ever since. Range says they will finish construction 1Q 2010, and begin ethanol production in 2Q 2010. Can Range really begin production that soon?

4) Ask POET what they think of cellulosic from corn stover. They seem to say that stover has too many collection and handling problems (dirty, low density, etc), and that is one reason they are concentrating on cobs only. Many others assume corn stover will be the primary source of cellulosic feedstock. Answer

Anonymous wrote: While you’re in Alberta, ask about Iogen and when they’ll finally get their cellulosic plant started in Sask. Also, Enerkem has been making news lately, both with a 10 mgy MSW plant and their just-released plans to construct a $100 million R&D facility in Edmonton. EnerkemR&D EnerkemMSWPlant Answer

bts asked: Comments on this partnership between Venter and Exxon?

Exxon to Invest Millions to Make Fuel From Algae Answer

The Answers


You always have to read between the lines. Sometimes people talk about where costs might be “in a few years” or “with technical breakthroughs” – as is often the case with algal biodiesel (and has been the case with oil shale for 100 years). Not that this is necessarily the case here, but those are the kinds of things I look for as I read these press releases. Is it possible to make oil from coal? Sure, it just traditionally takes a lot of energy. Coal into oil is essentially what you are doing with CTL, and there are several variations of the process (including non-gasification options). South Africa has been doing it for a while now.

So what the UTA researchers are describing is a chemical process for turning coal into oil. Such processes do exist, so the question is whether this is novel, cheaper, more efficient, etc. That will require peeling a few more layers of the onion than what one finds in a press release – where the best you may get is caveats. Generally speaking, press releases tend to over-simplify things a lot. If even a tenth of the press releases on “the next big thing” had turned out to be true, we would be living in a very different world. My favorite pasttime might be loading the family up in my cold fusion-powered hovercraft for a family outing. Or knocking out essays on my DNA-based computer (I remember in 1995 or so when this was going to put Intel out of business).

People have all sorts of motives for these press releases. Some are to announce something truly revolutionary. Those are a tiny fraction. More often, it is as you say; someone is trying to catch the eye of someone who might fund them. I have been in a position many times to issue just such a press release, and sometimes I think about that when I see one of these.

For instance, in 1994 at Texas A&M I had an idea to create a cellulose reactor based on the contents of termites’ stomachs. To my knowledge, I was the first person to attempt such a thing. The experiment didn’t turn out very well. My analysis detected only a small amount of butanol in the product. Had my imagination been big enough, here was the press release: “A&M Researcher Turns Trash into Fuel.” For the story, I could project increases in yields, renewable butanol bringing Arab sheiks to their knees, and an actual use for those pesky termites. Of course as my yield projections go up, my cost projections go down, and I could predict that this “may soon lead to sub-$1/gal fuel.” In reality, I considered it a failed experiment, stopped work, and wrote up my dissertation. But that is the sort of experience that always has me looking at these press releases in a pretty skeptical light.

Return to Top


Jim, this is along the lines of my last answer. People are working on these catalysts all the time. I have spent time in the lab working on gasification catalysts, and sometimes you come across something that looks pretty interesting. Then you try to scale it up and find that it isn’t stable in a larger reactor because the temperatures are hotter than they were in the lab.

Again, without peeling the onion and having a look at what everyone else is doing, it is impossible to tell whether this really amounts to something special. It could be that their competitors have already achieved these milestones and just didn’t issue press releases. Most organizations don’t. I was awarded several patents from my days at ConocoPhillips, but we never issued a press release even though the potential implications of some of them were pretty interesting.

One thing I will say is that from my time in a refinery, there wasn’t 7-9% efficiency gain to be had. We were already pushing the maximum possible conversion efficiency of oil into liquid products, and while you might have squeezed out another 2-3%, no way could you get up into the 8% range. There may be some really inefficient refineries out there that could benefit from this, but we will have to wait a couple of years and see if they actually start penetrating the market. Then you will know that they indeed invented something with a distinct advantage over the competitors.

Return to Top


There are a couple of developments in cellulose chemistry that I have been watching pretty closely: The ionic liquid techniques that you mentioned, and supercritical cellulose chemistry with either CO2 or ethanol.

Both of these techniques are energy intensive, so a lot of work needs to be done around the economics of these processes relative to competing technologies. A number of questions arise, such as “What other components are extracted along with the cellulose?” Or “What does it take to separate the cellulose from the component used to extract it?” That isn’t to say that these technologies aren’t well-worth further exploration. From an academic standpoint, they are very interesting. In the end, I think they will be hard pressed to compete with gasification if the intent is production of fuels. However, specialty chemicals might turn out to be a good niche application for these techniques.

Return to Top


Building on the previous answer, I think the more interesting developments in lignocellulosic chemistry are in chemical processing, as opposed to biochemical processing. I discussed this in an essay a couple of years ago, which was about Vinod Khosla’s investment into KiOR. This is their approach as well; to use catalytic processes to produce fuel.

The challenge is that biomass isn’t very energy dense, and these processes require elevated temperatures and pressures. So a key question is how much energy (and in what form) it takes to transport one BTU of biomass and process it into one BTU of fuel. Presently I think the processing energy is a pretty high fraction of the contained energy. Those energy inputs are going to have to come down before these sorts of technologies make much of an impact. The research is certainly promising, and I favor continued government funding. Would I invest in a company based on this concept? Not at this stage of development.

Return to Top


Generally speaking, I think we are going to look back and see that we wasted tremendous money, time, and resources chasing dead ends. As you say, nobody knows what developments are in front of us. But many are betting that there are revolutionary developments that will transform the energy sector. As a result, they are throwing a lot of money in a lot of different directions. I don’t have a big problem with this if the proper due diligence is done, especially if private money is being used to fund these various ventures. I do agree with Vinod Khosla’s philosophy of spreading his bets across many different technologies. What I find annoying is that often the proper due diligence is not done, and often taxpayer money ends up funding these dead ends. That is money that is truly wasted.

However, one thing to keep in mind with respect to your “grey swans” is that they also have entrenched lobbies to contend with. It may turn out that the grey swan finds itself in a difficult fight to penetrate the market. One particular example I am thinking of is the decision of Congress to kill support for more efficient 2nd generation green diesel production because the inefficient 1st generation producers argued that it would put them out of business. Add in the fact that it was an oil company involved in the 2nd generation technology, and we find that grey swan struggling to survive.

Return to Top


Sam, I don’t see an easy answer to that. Utilities are in the business of making money. When people reduce consumption it costs them money. Is there a way that they can benefit from that? I suppose in a world in which we are taxing carbon emissions, the savings from lower emissions would partially offset the loss of the sale of the electricity. But truthfully, that will be a small fraction at best. I always had the same issue when I was in the oil business. I wanted to see lower consumption, and I couldn’t see any way the oil companies could benefit directly from that. I think an effective mechanism for enabling suppliers to benefit from lower consumption would really be a game changer. If you think of something, let me know.

Return to Top


When I first saw this, I thought “That’s one of the strangest energy-related stories I have ever seen.” It reminded me of my reaction to a recent story: Greenland shark may become new source of biofuel. I like the wild and wacky, and both of these fall into that category. But can it make an impact? The problem with the urea idea is that the fuel is actually ammonia and hydrogen. Where do those come from? Mostly from natural gas. If you look at the efficiencies of the processes involved, you would be far better off just to burn the natural gas. So I don’t see it going far in its current form, but I applaud the creativity. Who knows, maybe this will evolve into something more promising.

Return to Top


John, while I agree that we are spending dollars in the Middle East because of oil, I disagree with several of your points. First, we aren’t spending that money to guard oil company interests. It is being done with the intent to keep cheap oil flowing to the American consumer. So the key interest here is that of the U.S. government, so the voting public is kept happy. Not that there is no benefit to the oil companies, but the government views a military presence there as an important issue of national security – not one of oil company security. If the oil did get cut off, the average person is going to bear the consequences.

I also disagree with your comment that biofuels are cheaper than gasoline. There are some exceptions – like sugarcane ethanol from Brazil – but for the most part gasoline is cheaper based on energy content. For instance, at today’s close ethanol on the CBOT for September delivery was trading for $1.65 a gallon. Gasoline on the NYMEX today was trading for $2.07/gal. However, because of the difference in energy content, the cost of this ethanol was $21.71/MMBTU and the gasoline was $18/MMBTU. With rare exceptions over the years, this has always been the case – and at times the differences have been quite large.

Further, you are kidding yourself if you think the oil companies are running scared. As I have pointed out before, it is a matter of scale. If corn ethanol started to look like a viable, long-term business model for them, the oil companies would just buy their way in as Valero recently did. Oil companies won’t sit around and go extinct because some fancy new biofuel put them out of business. They have big R&D budgets, and their efforts likely cover every biofuel you ever heard of (and many options you probably haven’t).

Return to Top


1. Put me down as someone who believes that the one currently under construction – Range Fuels – is going to see their schedule continue to slip, and I believe they are going to have a difficult time meeting production goals. Multiple sources are telling me that they have some issues.

Further, the national projected ramp-up in cellulosic ethanol – if it happens at all – will be a fraction of what has been projected. Right now there isn’t even a clear pathway. It’s like marking out the road map for curing various cancers over the next few years. It is great to have such a road map, but you are assuming technological breakthroughs that may not happen. Right now cellulosic ethanol still looks to me like a niche, and not a scalable, mainstream fuel.

2. That’s a good question, because I am aware of just such a situation now. Investors are dragging their feet on Plant #2 because Plant #1 is still not producing per the plan. In general, I think if a 1st gen facility comes online and starts to deliver per expectations, money will start to flow pretty quickly. I would think within 6 months of delivering, investors will be ready to jump in. But it is going to take more than 6 months to optimize production to optimize one of these next generation plants once it starts up. There isn’t a blueprint for success, and novel problems are going to be encountered and have to be solved.

3. No, the schedule for Range will slip because they still have kinks to work out. Write it down and hold me to it.

4. Here is what POET said about stover: “The yield of cobs is 0.65 tons/acre, and we can collect them commingled with grain with a modified combine. Or we can collect them with stover coming out of the back of the combine. The bulk density for cobs is higher than for stover, and that makes them easier to separate. We make sure sufficient stover is left on the field for erosion control and nutrition. We are focused on cobs because the bulk density for cobs is better than for stover, and cobs have 16% more carbohydrates than the stover. We don’t have to leave all stover in the field necessarily over soil depletion issues; we have just chosen to focus on cobs. How much one can remove depends on soil type, location, and tillage practice. Cobs take those variables away.”

Return to Top


I did ask about both Iogen and Enerkem while I was in Alberta. My hosts were quite skeptical that Iogen will ever build a commercial plant. I will say that they have enough demonstration level experience that it is suspicious that they don’t have plants sprouting up everywhere. After all, they have been producing cellulosic ethanol at small scale for 5 years. There are people that have been producing it for 0 years who are in the process of building plants. Given that governments are throwing money at anything looking like cellulosic ethanol, I think this puts a big question mark over their true commercial viability (at least at the present state of their technology).

There was less talk about Enerkem, and frankly before the trip I didn’t know much about them. The talk I did hear was that Enerkem is really only focused on the front end of a GTL plant (the gasification step). Enerkem’s view is that their post-gasification steps are flexible, and they can produce a variety of chemicals. They have announced that one site will produce ethanol (this is not the most efficient usage of syngas, by the way). Enerkem’s Press Release page certainly implies that they are busy with projects.

Return to Top


I think there are two approaches to algal fuel that might work. One is if algae can be made to naturally excrete oil. If so, then it may be possible to let the oil layer build up and then skim it. This avoids the materials handling nightmare of separating the algae from the water, and then the oil from the algae. This is apparently the focus of the research. Still, it is a long shot. Exxon’s VP for R&D was quoted as saying “I am not going to sugarcoat this — this is not going to be easy. Any large-scale commercial plants to produce algae-based fuels are at least 5 to 10 years away.” I think that is a realistic assessment. If the breakthrough came tomorrow then you are still looking at piloting and finally commercialization. I don’t think that is likely to happen in 5 years. So first you have to have some technical breakthroughs – and those aren’t a given – and if you pass through that gate then you won’t see this on the market for 10 years. I believe that is a realistic assessment.

The second approach that might work is if a valuable product – such as a pharmaceutical – is being produced as the primary product, and oil is being produced as a co-product. The expense of collecting and processing algae is just too great for oil to be the primary purpose of the operation.

Return to Top

August 4, 2009 Posted by | algal biodiesel, biodiesel, biogasoline, Choren, coal, ExxonMobil, green diesel, Iogen, range fuels, refining, Vinod Khosla | 39 Comments