R-Squared Energy Blog

Pure Energy

Biofuel Developments

I woke up in Switzerland this morning after having spent the past 3 days in the Netherlands. Later today I travel to Germany. The weather here is cold. I love Europe, but do not miss riding my bike in rain that is 1 degree above freezing (as I had to do in the Netherlands on Tuesday). Switzerland is blanketed with snow; the country from the air looks like a Christmas card. I have been told that there is even more snow in Dresden, which is my next stop.

I have been trying to keep up on energy news, and there have been some interesting developments. The previous essay has also hit the 200 comment mark (Blogger is clearly not designed to deal with over 200 comments), so it’s time to put something else out there. A number of people have either commented here or sent me an e-mail about the recent LS9 news:

Bacteria rebuilt to make oil

Researchers have engineered a common type of bacteria to produce biodiesel and other goodies from plain old plants. The microbial trickery, detailed today in the journal Nature, promises to add “nature’s petroleum” to America’s energy supply within the next few years.

“We’ve got a billion tons of biomass every year that goes unused,” said Jay Keasling, a co-author of research study and chief executive officer for the U.S. Department of Energy’s Joint BioEnergy Institute, or JBEI. “We’d like to turn that into fuel.”

Keasling emphasized that the study published in Nature was a “proof of concept” rather than the demonstration of a commercially viable process. He and his colleagues are looking for a process that would utilize as much of the feedstock as possible, and not just the hemicellulose. “We got about 10 percent of the theoretical maximum yield, and we will continue to work on this to try to increase the yield,” he said.

One of the funders for the research is LS9, a California-based biotech company that intends to market fuels and other microbe-produced chemicals. “I’m reasonably optimistic that we’re going to have high-level production of these kinds of biofuels in the next couple of years,” Keasling said. Check out this Berkeley Lab news release to learn more about the research.

I have written a number of articles about LS9 (see LS9’s Oil-Crapping Bugs from three years ago), which I could summarize in this way. There are metabolic pathways that produce molecules that are very close to the structure of fuels. Our bodies produce fats, which aren’t chemically that far removed from diesel. It is probably technically possible to tweak those metabolic pathways to produce drop-in replacements for transportation fuels.

On the other hand, it is going to be technically quite challenging. So I deemed this a very interesting approach (in fact I have called it a Holy Grail), but I don’t place the odds of commercial success very high. If enough companies are attempting this, maybe someone will make it work, but the odds for any individual company to succeed in this area will be low in my opinion.

Then there was Shell’s announcement on a sugarcane ethanol JV in Brazil:

Shell, Cosan Sign $12B Brazilian JV Pact

LONDON (Dow Jones)–Shell International Petroleum Company Ltd, a unit of Royal Dutch Shell PLC (RDSA), and Cosan S.A. (CZZ) said Monday they have signed a non-binding memorandum of understanding, or MoU, to form a $12 billion joint venture in Brazil for the production of ethanol, sugar and power, and the supply, distribution and retail of transportation fuels.

-Shell will also contribute its 50% share interest in Iogen and its 14.7% share interest in Codexis.

Sugarcane ethanol is also a story that I have covered in great detail:

Brazilian Ethanol is Sustainable

The key to the success of sugarcane ethanol as a true competitor to fossil fuels is the fact that massive amounts of bagasse end up at the sugarcane plants. That bagasse is then essentially free fuel for driving the ethanol process – and the logistical issues of getting biomass to the plant are already worked out. If you had to go out and harvest bagasse for use as fuel, then it would be a totally different process. But all of those logistical steps – including the labor and energy of getting the bagasse to the plant – are already being done as a result of processing the sugarcane.

At the plant, the bagasse has been pulverized and washed during the processing of the sugarcane, so it is a relatively clean fuel that has had many ash components washed out. Burning bagasse for fuel means that sugarcane ethanol isn’t nearly as dependent on cheap fossil fuels as is the case with some flavors of ethanol. For this reason, I am a fan of sugarcane ethanol as a model of how to do biofuels in a sustainable manner (not that sugarcane production as is often practiced is completely sustainable, but it is definitely in the right direction in my opinion).

On the other hand, we have to bear in mind that tropical countries have certain advantages with respect to rainfall and solar insolation, and just because Brazil can do it doesn’t mean temperate climates can follow the same model:

http://i-r-squared.blogspot.com/2006/06/lessons-from-brazil.html

That’s all the time I have for now. Bis bald!

February 4, 2010 Posted by | Brazil, Brazilian ethanol, LS9, sugar subsidies | Comments Off on Biofuel Developments

A New Approach to Biogasoline

My ideal microbe for biofuel production would consume garbage, excrete gasoline, and die if it escapes into the wild. Excretion of longer chain hydrocarbons like gasoline would enable a less energy-intensive separation, because the product would phase out of water. LS9 is exploring this sort of pathway via microbes, and Virent is trying to do the same thing catalytically.

It is quite a challenging problem, but should be technically viable. And a company that can achieve an edge in this space could really dominate the biofuels arena. As I have said, it is difficult, but Holy Grail research.

Today a new and quite novel approach was announced in the Journal of the American Chemical Society:

Synthesis of Methyl Halides from Biomass Using Engineered Microbes

Professor Christopher Voigt and his team at UC San Francisco are researching a multi-pronged approach to the problem. They are using a bacterium that was discovered at a landfill in France to consume cellulose and convert it to acetate. (This was exactly what I did in graduate school, except we were using microbes from the stomachs of cattle to convert cellulose into acetate. After all, the stomach of a cow is a cellulose conversion factory).

Once acetate is produced, Professor’s Voigt’s team utilized a yeast to convert the acetate into a methyl halide. The beauty of this approach is three-fold. First, the acetate poisons the bacterium as the concentration builds, but the yeast prevents that by consuming it as it is produced. Second, the product comes off as a gas, simplifying the separation of the product from the aqueous solution. Finally, methyl halides can be converted into gasoline catalytically.

So what’s the catch? Generally the yields and reaction rates via these sorts of approaches are too low to be economically viable. This means that even if you have something that phases out of solution (or a gas that bubbles out in this case) the reactor(s) may need to be enormous to produce commercial quantities of product. Another potential issue here is the possibility that other gases are produced along with the methyl halides, potentially requiring a separation after all. Finally, methyl halides have never been turned into gasoline at large scale. If the economics were attractive, we would probably be using this process to convert natural gas into gasoline.

Still, this is a very interesting approach and an avenue that appears to be worthy of much more research.

Finally, hat tip to a reader for bringing this story to my attention earlier today.

Additional Reading

Lab finds new method to turn biomass into gasoline

Yeast and bacterium turned into gasoline factory

Californians engineer microbes to produce methyl halides

April 22, 2009 Posted by | biofuels, biogasoline, LS9, Virent | 133 Comments

Amyris is Looking Promising

As I have said before, an ideal biofuel would be one that phases out of water, and is therefore much less energy intensive to separate. One of the big energy sinks in ethanol production involves an energy intensive separation of ethanol from water. If ethanol was insoluble it would phase out of solution and could be skimmed off and separated for a fraction of the energy input.

This is the sort of model that companies like LS9 and Virent have adopted. They are using microorganisms to produce longer-chain hydrocarbons that not only are much easier to separate from water, but also have higher energy density. I have commented in the past that this is ‘Holy Grail’ stuff, but also would be technically challenging. But I think companies pursuing this line of research have a real shot at being ultimately successful.

Add Amyris to the list of companies competing for the Holy Grail. They also have a twist to their business plan that should give them an advantage over their competitors. Amyris has been mentioned on this blog a couple of times previously, but not in the same kind of detail as LS9. This post will rectify that by highlighting what they are doing.

First, what are they doing? In their own words:

Amyris technology makes it possible to alter the metabolic pathways of microorganisms such as yeasts, creating living factories that produce molecules with practical applications. While reading, writing, and analyzing the DNA of microbes once took years, Amyris can now reprogram microorganisms and test our ability to produce desired molecules in days to weeks. Our proprietary technology transforms plant-based feedstocks, such as sugarcane, into 50,000 different isoprenoids –molecules used in a wide variety of energy, pharmaceutical, and chemical applications.

So you have heard similar claims before. However, they are quite a bit farther along than many would-be biofuel companies. They just announced the ‘opening’ (I presume that means they aren’t starting up just yet) of their first pilot plant in Emeryville, California:

Amyris Opens Pilot Plant to Produce Renewable Diesel Fuel

California Facility Marks Step in Developing and Commercializing Viable Alternative to Petroleum Fuels

EMERYVILLE, Calif. – November 12, 2008 – Amyris Biotechnologies, Inc. today announced that it has opened its first pilot plant producing No Compromise™ renewable diesel fuel. The pilot plant, which was ompleted in September, is an important milestone for Amyris towards its goal of developing and commercializing its sustainable, hydrocarbon‐based fuel, which it expects to bring to market in 2010.

The plant serves as a technical gateway to commercialization in Brazil and other manufacturing locations. It will demonstrate Amyris’ technology in scaled down process equipment that is representative of full ommercial scale operations; generate essential engineering data for designing Amyris’ full scale plants; and produce product samples for performance testing.

Amyris’ diesel is characterized as a No Compromise™ fuel because it is designed to be a scalable, low‐cost enewable fuel with performance attributes that equal or exceed those of petroleum‐sourced fuels and urrently available biofuels.

Other attributes innclude:

• Superior environmental performance: Preliminary analyses show that Amyris diesel fuel has virtually no sulfur and signifiantly reduced NOx, particulate, carbon monoxide and hydrocarbon exhaust emissions relative to petroleum‐sourced diesel fuel.

• High blending rates: Because Amyris renewable diesel contains many of the properties of petroleum diesel, Amyris can blend the fuel at high levels ‐‐ up to 50 pecent ‐‐ compared with 10‐20 percent for conventional biodiesel and ethanol.

• Compatibility with existing infrastructure: Unlike many commercially available biofuels, Amyris expects to distribute its renewable diesel through the existing fuel distribution and storage infrastructure, thus speeding time to market while minimizing costs.

• Adaptive: Amyris can produce its fuels from a broad range of feedstock including sugar cane and cellulosic biomass. It is starting with Brazilian sugar cane because it provides the most environmentally sound, economical, and scalable source of energy available today.

“This new diesel fuel has all the characteristics to make an important contribution toward solving our global transportation energy and climate crisis,” said John Melo, chief executive officer of Amyris. “The opening of ur pilot plant is a significant business marker for us, taking us one step closer to bringing our diesel fuel to market.”

In parallel with this effort, Amyris will open a larger pilot plant in Campinas, Brazil in the spring of 2009 here it will finalize processes for Brazilian operations; transfer the technology to manufacturing sites in Brazil; and provide ongoing support for optimizing production in Brazil.

Earlier this year, Amyris established Amyris‐Crystalsev Biofuels, a Brazilian venture in partnership with Crystalsev, one of Brazil’s largest ethanol distributors and marketers, to work with Brazilian sugarcane mills and fuel producers to scale up production of Amyris diesel fuel. SantelisaVale, the second‐largest ethanol nd sugar producer in Brazil has committed two million tons of sugar cane crushing capacity for the initial roduction of Amyris diesel, including its flagship Santelisa mill.

Amyris’ proprietary synthetic biology platform enables Amyris scientists to engineer microorganisms such as yeast so that they can transform sugar into 50,000 different molecules used in a wide variety of energy, pharmaceutical, and chemical applications. Amyris is working on the development and commercialization of everal of these molecules to provide a range of renewable products, including diesel fuel, jet fuel and specialty chemicals.

The platform has already proven successful through the development of a strain of yeast to enable the production of a precursor to artemisinin, a key ingredient in anti‐malarial drugs, at significantly lower cost than can be achieved with conventional technologies. This technology was developed as a not‐for‐profit initiative, and has been transferred to sanofi‐aventis.

About Amyris

Amyris is applying a proprietary synthetic biology platform to create No Compromise™ products ‐‐ low cost renewable fuels and chemicals that are intended to be environmentally friendly, compatible with the existing infrastructure, and have performance attributes comparable to petroleum‐based fuels. Amyris has also developed a technology to produce a second supply of an anti‐malarial drug. Founded in 2003, Amyris has raised over $120 million in equity funding to‐date, including investments from Khosla Ventures, Kleiner Perkins Caufield and Byers, TPG Biotech, and DAG Ventures. Amyris has over 200 employees and facilities in meryville, California; Chicago, Illinois; and Campinas, Brazil. More information about Amyris is available at http://www.amyris.com/.

The really interesting aspect of their business model is the Brazil angle. The U.S. currently has an import tariff on Brazilian ethanol. However, that tariff does not cover other biofuels coming from Brazil. By utilizing low-cost Brazilian sugar to make their biofuel, they stand a good chance of meeting their cost projects. Further, by making diesel – which is looking to be in tighter demand than gasoline for years to come – they are getting into a market with much better profit margins than ethanol has.

This, and some other highlights from a Greentech Media story:

Amyris: We’re Better Than Biodiesel, Ethanol or Gas

Amyris, for instance, will be able to produce a form of diesel that it will sell at the wholesale level for $2 a gallon or less, or around the same price as conventional fossil diesel, said CEO John Melo.

“It will be around the same price as regular petrol diesel, but it will produce 80 percent less greenhouse gases, provide a 10 percent reduction in NOx (nitrogen gases) and provide the same or better performance,” Melo said. “And with zero sulfur.”

The company’s jet fuel, which will replace kerosene-based fuels, will produce 90 percent fewer greenhouse gases than the regular stuff without denting performance or mileage, he said.

The big test for Amyris will arrive in about two years. The company has created joint ventures in Brazil to create biorefineries on sugar plantations where genetically engineered yeast will feast on freshly harvested sugar. The resulting fuel will then be loaded onto ships and brought to the U.S. By 2010, Amyris hopes to be producing 200 million gallons a year out of its first plant and erecting more plants.

Melo also pointed out that because Amyris isn’t producing ethanol (an alcohol) in Brazil but a hydrocarbon (a molecule includes hydrogen and carbons), the ethanol tariff on Brazilian ethanol doesn’t apply.

Promising stuff. To me it looks like they have a good chance of being successful.

Footnote: As is the case with LS9 and Virent, there is no Amyris stock that one can buy. It is a privately held venture.

November 13, 2008 Posted by | Amyris, LS9, Virent | 200 Comments

LS9 Stock

There was a major story a few days ago about LS9 in the Times Online:

Scientists find bugs that eat waste and excrete petrol

I have previously written several articles that mentioned LS9, including:

LS9’s Oil-Crapping Bugs

Apparently as a result of the Times article, there have been a number of articles in the past couple of days on LS9. This naturally attracted the attention of investors, and I have literally had hundreds of hits to my LS9 story by people Googling LS9 stock. In fact, right now if you Google that (without quotation marks), my story comes up at the top of the first page.

So, in an effort to provide investors what they are looking for (the other LS9 story doesn’t provide this information): There is no publicly traded LS9 stock. LS9 is privately held. They have only taken on private equity. I have had some contacts with Greg Pal at LS9 in the past, so I wrote to ask him whether they were still accepting investments. His answer: We’re not accepting outside investment at this time. So, right now you are out of luck if you want to invest in LS9.

You might try LS9 competitor Virent. They are also private, but they might be open to outside investors. Contacting them may be worth a shot.

June 17, 2008 Posted by | investing, LS9, Virent | 7 Comments

Green Job Opportunities

Since I was a kid, I have always wanted to “make a difference” by making a significant contribution to society. I have a soft spot for families and especially for kids, and I really wanted to contribute toward the quality of life for those groups. A big concern is that quality of life for a large segment of the world’s population, never good to begin with, is poised for further deterioration as fossil fuel supplies deplete.

Quality of life to me starts with the basics: People have enough food and clean water, they have shelter, they live and work in safe conditions, and they have adequate access to affordable energy. At various stages of my life I have had involvement in projects in all of these areas, but most of my career has been focused on the energy portion – both in providing adequate supplies, and in urging conservation efforts to stretch our supplies.

The affordable energy piece is becoming more challenging, and we need more people working on this issue. As I transition into my new “green” job, I intend to step up my efforts on the sustainable energy front. There are a number of ways I can do this. First, my new job directly impacts on this. The technology we are engaged in – described briefly in the final section – promises significant environmental and sustainability benefits. But that isn’t the sole contribution I can make. I can also help bring promising sustainable technologies together with highly-motivated and talented people to enhance the odds of success. Up to this point I have done this by calling attention to technologies that I felt were promising, as well as by providing technical advice for some projects on an ad hoc basis.

With this essay, I am attempting to marry talent/passion with need by publicizing vacancies for some specific “green jobs.” I have had a series of conversations over the past year or so with Choren, a renewable diesel company that is now looking to scale up. Google contacted me last week to inform me of some of their vacancies in their new renewable energy efforts. Vinod Khosla has informed me several times that many of the companies he is involved with are looking for talent. And my new company is recruiting as well. I don’t think these jobs will be competing for exactly the same talent pool, because the job locations are geographically diverse. So, if you are looking for a green future and decent job stability (a recent story from Yahoo identified jobs in the energy and environmental sectors as “recession proof”) – here are some opportunities of which I am currently aware.

Choren

I have had a series of discussions over the past year or so with some of the Choren staff, including the president of Choren USA, Dr. David Henson. During the course of these discussions, I formed the opinion that Choren is ideally positioned for long term success in the renewable energy sphere. I think they are focusing on the right technology (biomass-to-liquids) for sustainable liquid fuel production, and they are on the leading edge of that technology. Dr. Henson will be hosting me at Choren’s new BTL plant in Germany in a month or so, and hope to make a report on the visit.

Their opportunities are described from their website as follows:

For the expansion to “world”-scale 600 MWth “Sigma” production facilities and the exploration of additional applications of CHOREN’s technologies we are now seeking highly motivated engineering specialists in the areas of Mechanical Engineering, Process/Chemical Engineering and Energy Technology, preferably with long or short-term experience in any of the fields of gasification, Fischer Tropsch Fuel Synthesis and/or in the Petrochemical Industry.

Choren is looking to fill the following positions in Houston:

Project Manager CHOREN USA, Job Description

Senior Process Engineer CHOREN USA, Job Description

Process Engineer CHOREN USA, Job Description

You can learn more information about the job opportunities at Choren by visiting their Employment Opportunities USA page.

Google

I have admired Google for a long time. They seem genuinely motivated by a desire to help humanity. You may also be aware that they have topped CNN Money’s list of 100 Best Companies to Work For for the second year in a row.

Recently, they announced their intent to help power a clean energy revolution. I was aware of, and supportive of their efforts, and in a different time and place I might jump at the opportunity to work for them. Recently, they contacted me about just that, and I replied that while the timing is not right for me, I would help them publicize their vacancies.

Here is a short description of their vision, and what they are looking for:

Our thinking is that business as usual will not deliver low-cost, clean energy fast enough to avoid potentially catastrophic climate change. We need a clean energy revolution that will deliver breakthrough technologies priced lower than carbon-intensive alternatives such as coal. Google is launching an R&D group to develop electricity from renewable energy sources at a cost less than coal.

We are looking for extraordinarily creative, motivated and talented engineers with significant experience in developing complex engineering designs to join our newly-created renewable energy group. This group is tasked with developing the most cost-effective and scalable forms of renewable energy generation, and these people will play a key role in developing new technologies and systems.

…if you know other outstanding engineers who may be interested, I encourage you to pass along this information as we are hiring for multiple positions. If you prefer that I reach out to them directly, I am more than happy to do so.

Their specific job opportunities at the moment, mostly at their Mountain View, California site:

Renewable Energy Engineer
Head of Renewable Energy Engineering
Director, Green Business Strategy & Operations
Director of Other
Investments Manager, Renewable Energy

They are also asking for people with the following experience:

If you have relevant expertise in other areas beyond these specific positions, please send an email with your resume to energy@google.com . Areas of interest include, but are not limited to:

• regulatory issues
• land acquisition and management
• construction
• energy project development
• mechanical and electrical engineering
• thermodynamics and control systems
• physics and chemistry
• materials science

Khosla Ventures

Vinod Khosla has built quite a renewable energy portfolio. See this PowerPoint presentation for his complete (or at least what’s public) renewable portfolio. Opportunities range from corn ethanol (which I don’t recommend) to cellulosic ethanol (some promising opportunities there) to advanced biofuels, electrical power, and even water desalinization. There are far too many companies to give details on all of the job vacancies, so I will just pick out one of the most interesting (to me), LS9. They describe themselves as the Renewable Petroleum Company™, and have this description on their website:

LS9 DesignerBiofuels™ products are customized to closely resemble petroleum fuels, engineered to be clean, renewable, domestically produced, and cost competitive with crude oil.

LS9 is the market leader for hydrocarbon biofuels and is rapidly commercializing and scaling up DesignerBiofuels™ products to meet market demands, including construction of a pilot facility leading to commercial availability. While initially focusing on fuels, LS9 will also develop sustainable industrial chemicals for specialty applications.

They are looking for the following for their South San Francisco location:

Current openings at LS9 are listed below. Please submit your resume stating qualifications and relevant experience to hr@ls9.com and include the job title in the subject line. We look forward to hearing from you.

Bioprocess/Engineering

Director, Bioprocess Development
Scientist, Fermentation
Scientist, Fermentation
Associate Scientist, Fermentation
Research Associate/Senior Research Associate, Fermentation
Downstream Recovery Scientist

Chemistry/Biochemistry

Biochemist / Bio-organic Chemist Scientist
Research Associate/Senior Research Associate, Biochemistry

Instrumentation

Automation Laboratory Specialist

Metabolic Engineering

Scientist, Metabolic Engineering
Associate Scientist, Microbiology
Senior Research Associate, Microbiology

Corporate Development

Corporate Planning Analyst

What LS9 is attempting is Holy Grail stuff, but what they are trying to do should be technically feasible. However, it won’t be easy and it’s going to take some very talented people.

Don’t forget that this is only one of the Khosla Ventures’ companies. There are numerous job opportunities there if you dig a little.

Accsys Technologies

As I have mentioned previously, I left the oil industry on March 1, 2008 to become the Engineering Director for Accsys Technologies. While we are not creating energy as was the case with the previous companies I described, we are saving energy and attacking the problem of rainforest destruction. Here is a brief summary of what appealed to me about the company and my desire to make a difference:

Growing concerns about the destruction of tropical rainforests, a declining world stock of high quality timber and increasingly restrictive government regulations regarding the use of wood treated using toxic chemicals have created an exceptional market opportunity for the Company. Accsys believes that its technology will transform the use of wood in existing applications where durability and dimensional stability are valued, both halting the decline in the use of wood in outdoor applications and substituting plastics and metals.

Wood acetylation is a process which increases the amount of ‘acetyl’ molecules in wood, thereby changing its physical properties. The process protects wood from rot by making it “inedible” to most micro-organisms and insects, without – unlike conventional treatments – making it toxic.

I think you can see why that might appeal to me – this technology enables a sustainable replacement for tropical hardwoods, and can replace plastics and metals in some applications.

We are working on getting our job opportunities posted, but for now I will just mention a few. We are filling a wide variety of positions at our plant in Arnhem, in the Netherlands. If you are a citizen of an EU country, I believe you are eligible to work in the Netherlands. We should soon have a complete listing of jobs at our Titan Wood site (Titan Wood is a subsidiary of Accsys), but some of the current vacancies in Arnhem include Process Control Engineer, Project Manager, Supply Chain Manager, and process and mechanical engineers.

We are also filling jobs in our new Dallas office that are global in nature. For Dallas we are looking for a Global Process Improvement Manager (reports to me), Global Procurement Manager (reports to CEO), and a Panel Products Manager (reports to Panel Products Director). These positions require travel (got to break a few eggs to make a cake) to places like the Netherlands and China (where we are building a large facility in Nanjing). Required qualifications for these jobs include an engineering or chemistry degree, 7-10 years of relevant experience, and a preference for an MBA. Further, I want my Global Process Improvement Manager to share my passion for making the world a better place.

For now, you may send a cover letter and your resume or CV to JOBSUSA “at” accoya “dot” info (edited to slow the spambots) for positions in the U.S., or JOBSEurope “at” accoya “dot” info for positions in Europe. You may want to indicate that you are responding to this essay, and then the resume may be circulated to me.

Conclusion

Rest assured that I am not going to get in the habit of using my writing as a platform for promoting my new company. I do think it is directly topical to what I write about, and I plan to do one post in the future about the technology. However, most of my posts will be as they have been in the past: Covering energy, sustainability, and environmental responsibility. I do plan to shift more in the direction of “problem solving”, and this post was one aspect of that. It is an attempt to bring together talent and passion with a critical need, and it also will hopefully provide needed job stability in a fragile economy.

I am really interested in writing more about promising technologies, especially those that haven’t received much attention, but I first have to figure out a way to manage this. I tend to get about 19 bad or unworkable ideas e-mailed to me for every 1 that shows promise. I can’t afford the time at present to work my way through that sort of volume (and some of the proposals I see are very extensive), so I will continue to focus for now on those that are already on the radar.

February 28, 2008 Posted by | Accsys Technologies, Choren, Google, LS9, renewable diesel, Vinod Khosla | 180 Comments

My Top 10 Energy Stories of 2007

First, thanks to all who contributed ideas. You may have an entirely different opinion on the most important energy stories. Feel free to share it. Many of these stories were contributed by various readers. Comments by readers are italicized. If you want to know who wrote what, you can see the entire comment thread here.

Here are my Top 10 Energy Stories of 2007

1. Oil price soars as media becomes Peak Oil aware

One reason I felt pretty safe in making the $1,000 bet on oil prices is that a move from $60 – the price in January – to $100 – the price at which I would lose the bet – would be unprecedented. Of course a worldwide peak in oil production will also be unprecedented, and I expect oil prices to soar when that happens. While I still don’t think we have quite peaked, what did happen is that Peak Oil awareness really hit the mainstream in 2007. I started noticing a great many stories on Peak Oil (and quite a few on Peak Lite), especially following the ASPO Conference in October. This was right in the middle of the sharp run-up in prices. So I believe that a major factor contributing to the fast run-up was the sudden realization by a critical mass of people that Peak Oil is on top of us. In that case, the value of oil will be much higher.

In addition to record oil prices, back in the spring we saw record-high gasoline prices as a result of sustained, record-low gasoline inventories. Conditions are currently favoring new record-high gasoline prices in 2008.

2. Criticism of biofuels mounts

The bloom comes off the biofuel rose. European studies showed oil-palm biodiesel was actually worse for the environment due to tropical rainforest destruction, and US corn ethanol plants lost money because of overbuilding. A general biofuel backlash took root due to higher food prices and other side effects.

While I was criticizing corn ethanol before criticizing corn ethanol was cool, in 2007 the media started asking critical questions about water usage, pollution from industrial corn farming, and the impact of ethanol mandates on food prices.

3. The Chevy Volt is announced

GM has dedicated a full product team and allocated a plant for mass production — the first time in history an electric car has achieved such status.

Years after GM killed the electric car, they are bringing it back in the form of the Chevy Volt. I have long advocated the need for the electrification of transportation as one of the key elements in any Peak Oil mitigation plan. Therefore, I am very pleased to see GM making another effort at electric cars.

4. Nanosolar begins to deliver

Cost-effective solar power would be a very big silver BB in a Peak Oil mitigation plan. Nanosolar has the potential to deliver a game-changing thin-film photovoltaic technology. If you don’t know much about Nanosolar, check out this interview with their CEO: 10 Questions for Nanosolar CEO Martin Roscheisen

However, the potential for cost effective solar power also highlights the desperate need to tackle and solve the problem of energy storage for intermittent sources of energy like wind and solar power. Hopefully we will see some breakthroughs there in 2007.

5. LS9 starts up

For years I have dreamed of a microbe that eats garbage and excretes hydrocarbons. The beauty of such a system would be that the hydrocarbons would just phase out of solution, thus ensuring a low-energy purification step. If you think about it, the concept is not that far-fetched. The human body produces fats and fatty acids that are not too far-removed from the hydrocarbons that make up gasoline or diesel. There is no reason, in principle, that a microbe couldn’t be designed to do just that.

The difficulty lies in understanding the metabolic pathways well enough to modify them to produce the target molecule without severely compromising or killing the microbe. This is exactly what LS9 – the “Renewable Petroleum Company”, is attempting to do. And they have certainly assembled a team that just may pull it off.

6. Range Fuels breaks ground

In November Range Fuels – formerly Vinod Khosla’s Kergy venture – announced the groundbreaking of the first commercial “cellulosic” ethanol plant in the U.S. While I dispute the terminology (as I explained in this essay, it is actually a gasification process, which is not specific to cellulose), the process does have a chance to be a success in the long-run. Short-term, I believe they will remain highly dependent on generous subsidies because the capital costs for gasification processes are so high. But on down the road I think gasification makes a lot more sense than most fermentation processes.

One thing that I would have done differently would have been to produce diesel instead of ethanol. Once syngas is produced in a gasification step, there are many different products that can be made. It is not particularly efficient to produce ethanol in this process, but this is the kind of thing you end up with when the government is picking technology winners.

I do think Range Fuels has a high likelihood of becoming a significant technology. What little information is available certainly sounds promising, including the result from EBMUD that the Klepper gasifier was the most efficient.

7. First application for US nuclear plant in 30 years

NRG announces first application for US nuclear plant in 30 years:

NRG South Texas Nuclear

They propose to use GE’s Advanced Boiling Water Reactor technology.

My personal belief is that we are going to need nuclear power to continue making a significant contribution toward our electricity needs. This will be especially true if electric transport takes hold. Therefore, I think it is a very big story that 2007 saw the first application for a new U.S. nuclear plant in 30 years.

8. Carbon capture & sequestration moves forward

The FutureGen alliance announces the site for its demonstration plant on Tuesday, Dec. 18:

FutureGen Announcement

For those not familiar with it, FutureGen is a clean coal demonstration plant that will include carbon capture and sequestration. There are 4 finalist sites. Two in Illinois and two in Texas. The purpose of the project is to demonstrate commercial scale CCS technology.

FutureGen selected Mattoon, IL for their site.

FutureGen runs a combined cycle instead of the single cycle of existing coal plants. Combined cycle plants can achieve 50-60% thermal efficiency vs. the 33% typical of single cycle, so it’s quite possible FutureGen will deliver more kWh/ton of coal than existing plants.

9. Progress on next generation biofuels

The biofuel spotlight turned to the future. Dozens of startups focused on cellulosic ethanol, gasification and other next-gen processes competed for headlines with “green diesel”, butanol and other biofuel initiatives from the oil majors.

Most of the oil majors have taken a pass on the ethanol craze, but they are looking at other biofuels. 2007 saw announcements from BP that they would team with D1 Oils to produce biodiesel from jatropha; from ConocoPhillips that they would team with Tyson Foods to produce “green diesel” from waste animal fats; and that BP and Dupont would team up to produce bio-butanol. (I wrote a reality check on bio-butanol here).

10. US Navy funds Bussard Fusion

I think you have to include the US Navy funding Bussard Fusion in there:

http://www.defensenews.com/story.php?F=3139619&C=navwar

Bussard died a couple months ago. I had really given up on fusion, but his work actually appears to have a reasonable change to work. Hopefully with more funding his team will be able to make it work.

Yes, Dr. Bussard’s work will be carried on. First step is to construct WB-7 and replicate the results achieved with WB-6. Hopefully by the end of April 2008. If that works, then on to WB-8, and then an actual power generating plant.

The rest of the list (in no particular order), many of which could have easily been in the Top 10 list:

11. King Coal is still king

If we look for the stories that did not attract attention, surely one of the big ones has to be the continued surprising vitality of the international coal industry. King Coal has officially been dead for a long time. Who would have predicted that, 10 years after Kyoto, coal would once more be where it’s at, supplying more Btus to the world than ever before?

12. US Coal Plant cancellations, headlined by TXU cancelling 8 of 11 planned plants.

CO2, the primary driver behind the other half of our top 10 stories, has long played in Europe but will only achieve global influence by spreading through the US into the developing world. 2007’s coal plant cancellations marked the tipping point.

13. Al Gore wins Nobel Prize for work on Global Warming

Gore’s tireless efforts to educate the world on Global Warming was recognized with this year’s Nobel Peace Prize. Tiny Carthage, Tennessee now claims two Nobel Laureates. (Cordell Hull is the other).

14. Shell releases details of their shale oil process

Probably the most important energy announcement was Shell’s release of info on their proprietary in-situ process for generating oil from oil shale. Could open a whole new branch of the oil industry, put a cap on the price of oil from conventional fields, and thereby inject some realism into windy dreams. But it turns out that Shell has been working towards this for about a quarter of a century. “Incremental advances” indeed!

15. Resource nationalization grows

While the seizure of the assets of international oil companies by Hugo Chavez got the most press, many other countries are moving to nationalize their oil resources. Many other countries, and even states like Alaska, are also passing laws to increase their tax revenues from the extraction of oil. The U.S. needs to sit up and take notice, because this will further constrain supplies. We can’t continue to count on a steady supply of oil from countries who don’t like us, yet we lack the political will to reduce our dependence on these countries.

16. New efficiency record for silicon PV – 42.8 percent from sunlight at standard terrestrial conditions

http://www.physorg.com/news104501218.html

The highly efficient VHESC solar cell uses a novel lateral optical concentrating system that splits solar light into three different energy bins of high, medium and low, and directs them onto cells of various light sensitive materials to cover the solar spectrum. The system delivers variable concentrations to the different solar cell elements. The concentrator is stationary with a wide acceptance angle optical system that captures large amounts of light and eliminates the need for complicated tracking devices.

In a way I find the Nanosolar story more compelling since they are actually in commercial production now. Still, the prospect of high efficiency PV without using exotic and/or toxic materials gives me hope.

17. Manpower shortages in the energy sector

Big Oil’s Talent Hunt

From the article:

ConocoPhillips (COP) has grand plans. With demand for oil soaring, the company announced on Dec. 7 that it will boost its exploration and production budget by 8%, to $11 billion, a war chest intended to fund massive projects from Canada to China to the Caspian Sea.

But there’s a potential obstacle to the company’s vision: not enough people to get the work done. Half of Conoco’s employees are eligible for retirement within five years. Unless older workers can be replaced, Conoco’s expansion could be costlier and slower than planned. In an interview with BusinessWeek, CEO James J. Mulva said that the lack of talent is one of the most dangerous threats to his company’s long-term health. “People are a big concern,” he said.

This is not just a big oil story. Lack of workers is hitting all sectors of the energy industry. It seems that college students would rather be lawyers or investment bankers than scientists and engineers.

18. Texas surpassed California in wind energy

This signals a shift in wind from high-cost, subsidized eco-darling to cost-effective energy source. As the low-cost provider, wind now thrives in low bureaucracy states such as former oil-king Texas. Meanwhile high-regulation states such as California lag behind.

19. Potential PV improvement

Potential improvement on PV front

Transparent electrodes created from atom-thick carbon sheets could make solar cells and LCDs without depleting precious mineral resources, say researchers in Germany.

Solar cells, LCDs, and some other devices, must have transparent electrodes in parts of their designs to let light in or out. These electrodes are usually made from indium tin oxide (ITO) but experts calculate that there is only 10 years’ worth of indium left on the planet, with LCD panels consuming the majority of existing stocks.

“There is not enough indium on earth for the future development of devices using it,” says Linjie Zhi of the Max Planck Institute for Polymer Research in Mainz, Germany. “It is also not very stable, so you have to be careful during the fabrication process.”

20. Study analyzes off shore wind in US Northeast

http://www.physorg.com/news89650495.html

The wind resource off the Mid-Atlantic coast could supply the energy needs of nine states from Massachusetts to North Carolina, plus the District of Columbia–with enough left over to support a 50 percent increase in future energy demand–according to a study by researchers at the University of Delaware and Stanford University.

The study marks the first empirical analysis in the United States of a large-scale region’s potential offshore wind-energy supply using a model that links geophysics with wind-electric technology–and that defines where wind turbines at sea may be located in relation to water depth, geology and “exclusion zones” for bird flyways, shipping lanes and other uses.

21. A123Systems mass produces next generation lithium batteries

Shipping in DeWalt’s 2007 line of 36V cordless power tools, these new cells mark the 5th wave of rechargeable batteries (lead-acid, NiCad, NiMH, Li-ion and now advanced lithium). Advanced lithium chemistries from A123 and dozens of other vendors offer the possibility of cost-effective plug-in hybrids as well as applications in the electrical grid.

22. Electricity shortages, particularly in the developing world

Some appear to be related to climate change — droughts that require major hydro cutbacks. Some are clearly due to oil prices/supplies — poor countries that burn heavy diesel in their power plants and can’t afford it at the new world prices. Some are due to bad bets on fuel sources — natural gas generators put in, and the gas supply declining sooner than planned.

23. Solar thermal heats up

For decades the SEGS parabolic trough plant in California’s Mojave desert stood alone as the only large-scale CSP plant on earth, but 2007 saw a rebirth of this technology with the inauguration of the 64MW Nevada Solar One plant and construction of plants in Spain, Australia and elsewhere. California utilities have ordered up to 1750 MW of capacity from dish-Stirling purveyor Stirling Energy Systems and startups such as Ausra are pushing the price/performance barrier with linear Fresnel architectures.

24. First Solar market value hits $20 billion

As the first mass producer of non-silicon thin film PV, FSLR cashed in big-time in 2007. Their $1.40/W manufacturing cost is a huge competitive advantage, yielding fat profits and an eye-popping 200% growth rate. True to their name, First Solar got out of the gate first, but other non-Si players are still in the race. Companies using CIGS, including the much-hyped but yet-to-deliver Nanosolar, promise to break the $1/W barrier.

25. Cooper Pairs in insulators

http://www.aip.org/pnu/2007/split/849-1.html

One of the AIP’s top stories of the year, this discovery may well help us reach a better understanding of superconductivity and insulators both. Superconductivity is of course a holy grail in energy research, and while this discovery doesn’t directly lead to a room temp superconductor, it does add to the fundamental knowledge of material in the solid state.

26. Medvedev slated to take over from Putin

http://en.rian.ru/russia/20071217/92858987.html

Essentially Putin’s Russia will continue, and that has direct implication for all the fossil fuel industry in Asia, regarding everything from global warming to export control to defense postures. Putin’s Russia, one of an energy oligarchy, will continue to express those policies likely for a good portion of the 21st century.

27. Conditions in Iraq improve enough to get the oil industry back online

http://www.rigzone.com/news/article.asp?a_id=54099

Opening the possibility that Iraq just might return to a functioning member of OPEC has direct implications on the availability of oil for import around the world.

28. USAF test flight of transport aircraft C-17 using CTL synthetic fuel

http://www.enn.com/pollution/article/24117

This heralds the onset of CTL and likely portrays our (US) future over the next couple of decades.

29. And now, for my wildcat speculation of the most important news item:

Namibia: Expert Confident About Oil Reserves

Southwest Africa will turn out to be a major oil exporting region over the next couple of decades, slowing the decrease in available net exports of oil.

30. The response of the global economy to the large increase in oil prices

Most people would have probably assumed that $90 oil would have caused mayhem in the global economy a year or two ago. Yet the effect has been relatively muted. I think this says a lot about how effectively individuals, businesses (and hats off to alternative energy firms), and governments have responded to increasing oil prices over the long term. Oil now has a much smaller (I believe around 50%) impact per GDP than it did in the 1970’s in most of the big western economies, including the US.

31. Tesla troubles

A not-positive but nevertheless noteworthy story is Tesla Motors recent troubles with putting the final touches on its long-awaited car, particularly with the transmission failure and the management shuffling.

And I love this suggestion for 2008. What a great idea this would be:

My favorite energy story for 2008 would be — Congress recognizes they cannot pick winners, and instead sets up a multi-billion dollar X-Prize competition for the first three alternate energy sources to supply reliable commercial-scale power at costs competitive with fossils.

So those were the energy stories that I, or various readers thought were significant in 2007. Were there other significant stories that we missed?

Looking back at the list, many (most?) of the stories were not anticipated at the beginning of the year. So, who knows what 2008 will bring. Any thoughts?

December 22, 2007 Posted by | Al Gore, Chevy Volt, ConocoPhillips, ethanol, food prices, LS9, nuclear energy, oil prices, Peak Oil, range fuels, reader submission, solar efficiency, solar power, Tyson Foods | 12 Comments

Help Brainstorm the Top Energy Stories of 2007

While Platts has done a great job listing all of the major oil company stories of 2007, I am working on a Top 10 list for energy in general. I am about to be offline for a few days, so I thought this would be a good opportunity to gather input on the top energy stories of the year. My short (non-oil company) list of potential candidates would be Nanosolar, the Chevy Volt announcement, the LS9 start-up, the Range Fuels groundbreaking, the BP/D1 jatropha announcement, and the COP/Tyson green diesel announcement. Those are some that spring to my mind.

What else? I am struggling to remember any major developments in wind, tidal, or geothermal power. What about coal? Nuclear? Feel free to debate the list as well. I will check in later on next week and start crafting a post around the list.

December 15, 2007 Posted by | Chevy Volt, ConocoPhillips, LS9, Nanosolar, range fuels, Tyson Foods | 116 Comments

Vinod Khosla Scoops Me

Some people think I am anti-ethanol. That is an oversimplification, and a misrepresentation of my position. I have nothing against ethanol as a fuel. It isn’t as good a fuel as butanol, but then again we can’t make butanol as efficiently as we make ethanol.

My objection is that I think the way we make ethanol in the U.S. is a big mistake, and we will recognize this eventually. It may happen following a drought in the Midwest that causes corn crops to fail. That may be what it takes before we recognize that recycling natural gas into ethanol via food was a terribly bad and short-sighted idea.

I also dislike the incredible hype associated with cellulosic ethanol. Promising too much lulls the public into thinking we have a solution ready to go in case of an energy crisis. Not so. But underneath that hype is a lot of potential. I don’t think cellulosic success will come from an expensive hydrolysis/biological process. This is simply too inefficient, and requires very high fossil fuel inputs. Rather, I think success will come from a thermochemical process.

Lately, I have spent an awful lot of time studying this:

On paper it is deceptively simply to turn that cellulose biopolymer chain into hydrocarbons or alcohols. In practice it is a different matter. If you know your organic chemistry, you can see sites that should be amenable to chemical attack. I have sketched out pathways that seem like they should work, but you never know until you take them into the lab and try them.

One of the things we do in oil refineries is to crack very complex molecules like this. So, for a long time I have wondered about the implications of using various refining processes on cellulose. For instance, can it be cracked in a hydrocracker? How about a catalytic cracker? How would cellulose behave it co-fed into a coker? (There are obvious mass transfer constraints that would have to be addressed).

Imagine my surprise today when I was trying to determine if anyone has ever done this, and I ran across this:

Khosla Ventures and BIOeCON form KiOR to commercialize cellulosic ethanol

A technology called the “Biomass Catalytic Cracking Process” could be the key to breaking material like wood, grass and corn husks down for ethanol production.

Catalytic cracking is a process already used in today’s petroleum refineries. Simply put, chemicals are used to break down complex organic molecules. The trick is making the reactions between specific chemicals and molecules efficient and controllable, in order to come up with a desirable product like cellulosic ethanol.

The biofuels industry is highly interested in that type of ethanol, but the process of “cracking” the molecular structures of woody plants, whether with chemicals, heat or other methods, has not yet become cost-effective. KiOR is Khosla Ventures’ and BIOeCON’s bet on commercializing a process.

Khosla Ventures provided the new company’s seed funding, but the amount was not disclosed. BIOeCON’s investment is its intellectual property, which includes the catalytic cracking process.

Doh! Looks like I am not the only one who has been thinking hard about this. Clearly I need to stop letting these ideas percolate indefinitely in my head, and write up a business plan and get to work testing them.

I will be the first to admit that Khosla and I haven’t always seen eye to eye. But I think his most recent ventures – from Range Fuels to his investments into LS9 to this latest venture – have a much greater chance of success than some of his earlier ethanol investments. Note that none of these processes require an energy intensive, wet-distillation, which has been one of my biggest complaints about ethanol production. I still say that he is overpromising on the potential, but I think he is now heading into more promising waters.

November 10, 2007 Posted by | cellulose, cellulosic ethanol, Kergy, LS9, range fuels, Vinod Khosla | 20 Comments

Vinod Khosla Scoops Me

Some people think I am anti-ethanol. That is an oversimplification, and a misrepresentation of my position. I have nothing against ethanol as a fuel. It isn’t as good a fuel as butanol, but then again we can’t make butanol as efficiently as we make ethanol.

My objection is that I think the way we make ethanol in the U.S. is a big mistake, and we will recognize this eventually. It may happen following a drought in the Midwest that causes corn crops to fail. That may be what it takes before we recognize that recycling natural gas into ethanol via food was a terribly bad and short-sighted idea.

I also dislike the incredible hype associated with cellulosic ethanol. Promising too much lulls the public into thinking we have a solution ready to go in case of an energy crisis. Not so. But underneath that hype is a lot of potential. I don’t think cellulosic success will come from an expensive hydrolysis/biological process. This is simply too inefficient, and requires very high fossil fuel inputs. Rather, I think success will come from a thermochemical process.

Lately, I have spent an awful lot of time studying this:

On paper it is deceptively simply to turn that cellulose biopolymer chain into hydrocarbons or alcohols. In practice it is a different matter. If you know your organic chemistry, you can see sites that should be amenable to chemical attack. I have sketched out pathways that seem like they should work, but you never know until you take them into the lab and try them.

One of the things we do in oil refineries is to crack very complex molecules like this. So, for a long time I have wondered about the implications of using various refining processes on cellulose. For instance, can it be cracked in a hydrocracker? How about a catalytic cracker? How would cellulose behave it co-fed into a coker? (There are obvious mass transfer constraints that would have to be addressed).

Imagine my surprise today when I was trying to determine if anyone has ever done this, and I ran across this:

Khosla Ventures and BIOeCON form KiOR to commercialize cellulosic ethanol

A technology called the “Biomass Catalytic Cracking Process” could be the key to breaking material like wood, grass and corn husks down for ethanol production.

Catalytic cracking is a process already used in today’s petroleum refineries. Simply put, chemicals are used to break down complex organic molecules. The trick is making the reactions between specific chemicals and molecules efficient and controllable, in order to come up with a desirable product like cellulosic ethanol.

The biofuels industry is highly interested in that type of ethanol, but the process of “cracking” the molecular structures of woody plants, whether with chemicals, heat or other methods, has not yet become cost-effective. KiOR is Khosla Ventures’ and BIOeCON’s bet on commercializing a process.

Khosla Ventures provided the new company’s seed funding, but the amount was not disclosed. BIOeCON’s investment is its intellectual property, which includes the catalytic cracking process.

Doh! Looks like I am not the only one who has been thinking hard about this. Clearly I need to stop letting these ideas percolate indefinitely in my head, and write up a business plan and get to work testing them.

I will be the first to admit that Khosla and I haven’t always seen eye to eye. But I think his most recent ventures – from Range Fuels to his investments into LS9 to this latest venture – have a much greater chance of success than some of his earlier ethanol investments. Note that none of these processes require an energy intensive, wet-distillation, which has been one of my biggest complaints about ethanol production. I still say that he is overpromising on the potential, but I think he is now heading into more promising waters.

November 10, 2007 Posted by | cellulose, cellulosic ethanol, Kergy, LS9, range fuels, Vinod Khosla | Comments Off on Vinod Khosla Scoops Me

Vinod Khosla Scoops Me

Some people think I am anti-ethanol. That is an oversimplification, and a misrepresentation of my position. I have nothing against ethanol as a fuel. It isn’t as good a fuel as butanol, but then again we can’t make butanol as efficiently as we make ethanol.

My objection is that I think the way we make ethanol in the U.S. is a big mistake, and we will recognize this eventually. It may happen following a drought in the Midwest that causes corn crops to fail. That may be what it takes before we recognize that recycling natural gas into ethanol via food was a terribly bad and short-sighted idea.

I also dislike the incredible hype associated with cellulosic ethanol. Promising too much lulls the public into thinking we have a solution ready to go in case of an energy crisis. Not so. But underneath that hype is a lot of potential. I don’t think cellulosic success will come from an expensive hydrolysis/biological process. This is simply too inefficient, and requires very high fossil fuel inputs. Rather, I think success will come from a thermochemical process.

Lately, I have spent an awful lot of time studying this:

On paper it is deceptively simply to turn that cellulose biopolymer chain into hydrocarbons or alcohols. In practice it is a different matter. If you know your organic chemistry, you can see sites that should be amenable to chemical attack. I have sketched out pathways that seem like they should work, but you never know until you take them into the lab and try them.

One of the things we do in oil refineries is to crack very complex molecules like this. So, for a long time I have wondered about the implications of using various refining processes on cellulose. For instance, can it be cracked in a hydrocracker? How about a catalytic cracker? How would cellulose behave it co-fed into a coker? (There are obvious mass transfer constraints that would have to be addressed).

Imagine my surprise today when I was trying to determine if anyone has ever done this, and I ran across this:

Khosla Ventures and BIOeCON form KiOR to commercialize cellulosic ethanol

A technology called the “Biomass Catalytic Cracking Process” could be the key to breaking material like wood, grass and corn husks down for ethanol production.

Catalytic cracking is a process already used in today’s petroleum refineries. Simply put, chemicals are used to break down complex organic molecules. The trick is making the reactions between specific chemicals and molecules efficient and controllable, in order to come up with a desirable product like cellulosic ethanol.

The biofuels industry is highly interested in that type of ethanol, but the process of “cracking” the molecular structures of woody plants, whether with chemicals, heat or other methods, has not yet become cost-effective. KiOR is Khosla Ventures’ and BIOeCON’s bet on commercializing a process.

Khosla Ventures provided the new company’s seed funding, but the amount was not disclosed. BIOeCON’s investment is its intellectual property, which includes the catalytic cracking process.

Doh! Looks like I am not the only one who has been thinking hard about this. Clearly I need to stop letting these ideas percolate indefinitely in my head, and write up a business plan and get to work testing them.

I will be the first to admit that Khosla and I haven’t always seen eye to eye. But I think his most recent ventures – from Range Fuels to his investments into LS9 to this latest venture – have a much greater chance of success than some of his earlier ethanol investments. Note that none of these processes require an energy intensive, wet-distillation, which has been one of my biggest complaints about ethanol production. I still say that he is overpromising on the potential, but I think he is now heading into more promising waters.

November 10, 2007 Posted by | cellulose, cellulosic ethanol, Kergy, LS9, range fuels, Vinod Khosla | 20 Comments